Przejdź do zawartości

Izomorfizm muzyczny

Z Wikipedii, wolnej encyklopedii

Izomorfizm muzycznyizomorfizm między wiązką styczną a wiązką kostyczną rozmaitości riemannowskiej określony za pomocą jej metryki. Znany jest również jako podnoszenie i opuszczanie wskaźników.

Dyskusja

[edytuj | edytuj kod]

Niech oznacza rozmaitość riemannowską, zaś oznacza lokalny układ współrzędnych dla wiązki stycznej z dualnym do niego koukładem Wówczas można wyrazić lokalnie metrykę riemannowską (która jest 2-kowariantnym polem tensorowym symetrycznym i dodatnio określone) jako Dla danego pola wektorowego można zdefiniować jego bemol jako

Operację tę nazywa się „opuszczaniem wskaźnika”. Korzystając z tradycyjnej notacji nawiasów kątowych dla iloczynu skalarnego wyznaczonego przez otrzymuje się nieco bardziej przejrzysty związek

dla wszystkich wektorów oraz

Alternatywnie, dla danego pola kowektorowego można określić jego krzyżyk jako

gdzie są elementami macierzy odwrotnej do Branie krzyżyka pola kowektorowego nazywa się „podnoszeniem wskaźnika”.

Konstrukcja ta daje dwa wzajemnie odwrotne izomorfizmy oraz Są to izomorfizmy wiązek wektorowych, które dla każdego dają odwrotne izomorfizmy przestrzeni liniowych między oraz

Izomorfizmy muzyczne mogą być także rozszerzone na wiązki oraz Należy przy tym zaznaczyć, który ze wskaźników ma być podniesiony lub opuszczony. Przykładowo niech dane będzie pole -tensorowe Podnosząc drugi wskaźnik uzyskuje się pole -tensorowe

Ślad tensora poprzez metrykę

[edytuj | edytuj kod]

Niech dla danego pola -tensorowego będzie określony ślad poprzez metrykę jako

Należy zauważyć, że definicja śladu jest niezależna od wyboru podnoszonego wskaźnika, gdyż tensor metryczny jest symetryczny.

Zobacz też

[edytuj | edytuj kod]